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Abstract&An approximate solution is obtained for a stationary problem of mass transfer between a 
moving solid spherical particle and a laminar gas flow at low finite Peclet and Reynolds numbers. The 
case of a chemical surface reaction which depends arbitrarily on reagent concentration at the particle 
surface is considered. The results obtained may be used, in particular, to determine the rate of mass 
transfer between a particle and a flow for the integral- and fractional-order reactions. The solution of the 
problem has been found by the method of matching outer and inner asymptotic expansions in the Peclet 
number. The concentration field has been determined. The dependence of the total reagent flow at the 

particle surFace on the reaction kinetics, rate constant and the Peclet number has been obtained 

NOMENCLATURE 

particle radius : 
particle velocity ; 
diffusivity : 
kinematic viscosity of liquid ; 
reaction rate constant; 
reaction index ; 
reaction rate: 
= ,f(c), reaction law ; 

= uUD ’ , Peclet number; 
= al’vm’, Reynolds number: 
concentration (nondimensional); 
concentration of the incident flux; 

Schmidt number; 
Sherwood number; 
total diffusion flux: 
stream function ; 
spherical coordinates; 

?($, <)/?(T.AL), Jacobian of the functions 

$and<; 

I’, = Pr. external coordinate: 

q. root of equations (8), (24); 
CI,,, h,, A,,, constants ; 
A, Laplacian operator; 
* 4 1 coefficient determined in (17). 

lNTRODUCTION 

INVESTIGA~IOK of convective diffusion to the surface 

of a reacting particle in a homogeneous flow of 
viscous fluid was the concern of a number of 

publications [I, 21 which considered the case of 
complete absorption of reagent by the particle 
surface as well as of the chemical first-order surface 
reaction [3,4]. It is of interest to study the diffusion 
of reagent to a moving particle at the surface of 
which there is a chemical reaction the rate of which 
depends on the reagent concentration near the 
particle surface in a more complex, generally speak- 
ing arbitrary way. This type of problem occurs, for 

example, when studying reagent diffusion to a 

particle under the conditions of the reaction at the 

particle surface proceeding according to the Lang- 
muir kinetics with mean filling of the surface [S]. 
Examples of the integral-order reactions arc also 
generally known. 

The paper considers stationary convective dif- 
fusion of a reacting substance to a solid spherical 

particle moving in a viscous gas. The particle is 
assumed to be small enough so that the Reynolds 

and Peclet numbers are low. Arbitrary conditions of 
the diffusing substance absorption are prescribed at 
the surface allowing an arbitrary-order chemical 
reaction on the surface to be considered as a special 
case. 

For low finite (of the order of unity and smaller) 

Reynolds and Peclet numbers, the dependence of the 
total influx of reagent to a particle on the reaction 
rate constant, its order and the Reynolds and Peclet 

numbers is determined in a closed form. Several 
specific examples are considered. 

STATEMENT OF THE PROBLEM 

Consideration is given to convective diffusion of a 

reagent, dissolved in the flow, to the surface of a 
moving spherical particle. It is assumed that the 

Reynolds, Re = uC’F’, and Peclet, PC> = crL;Dm’, 

numbers are small [the Schmidt number for a gas 
SC = Pe/Re = O(l)]. Here, u is the particle radius. C’ 
is its velocity, v the kinematic velocity of the gas, and 
D is the diffusivity. The chemical reaction proceeds 
on its surface with the rate w = k’,f“(c,), where li’ is 
the reaction rate constant and c1 is the reagent 
concentration near the surface. The function ,f” is 
determined by a mechanism of the surface reaction. 
Thus; for the h--order reactions, j”(c) = ch. Of 
considerable interest are the fractional-order re- 
actions. This kind of problem appears, for example, 
in the studies of reagent diffusion in the case when 
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reaction on the particle surface proceeds according 
to the Langmuir kinetics with mean filling of the 
catalyst surface [5]. In this case ,i is some elTectivc 

order of reaction. As a practically important example 
we could cite a catalytic reaction bctwccn carbon 

and oxygen. In this case the order of the reaction i’r 
between a third and a half [6,7]. 

The process of reagent transfer is governed by the 

convective diffusion equation and the boundary 
conditions which. in terms of the nondimensional 
variables, in the spherical coordinate hystcm con- 

nected with the parti&. have the form 

I’ ---t ,7 
1 

< + 0 : I’ = I, i<,'?r L /if (i - I ) : 

f(& I) = - f”(C). (1) 

Here co is the concentration far from the particle: 

the particle radius and gas velocity in the incident 
flux stand for the scales of the nondimensional 
variables; I// is the dimensionless stream function 
determined at Rc < O( 1) in [8] ; I\’ = XtrD ‘. 

Let us examine the boundary-value problem (1) by 

the method of matched asymptotic expansions in 
terms of the Peclet number. For the limiting case of 
complete absorption an analogous analysis has been 
made in [2]. while for the linear absorption la\v. 

in [3]. 

For the analysis to be performed, introduce the 
external coordinate ,J = Pr and seek the solution in 
the form of inner and outer expansions 

;* = 1 x,,(Pc)<,,(r.p). I G I’< O(PF ‘1. (2) 
,I = 0 

:* = x x’“‘( PCJ)<‘“‘(,. )I J. O( PC 1 ) < I’. 

,I= 0 

z. = I, lim (x,,+ ,:a,,) = lim (zi” i “:P’) = 0. 
I’? - 0 I’? - 0 

(3) 

The inner expansion terms are determined suc- 
cessively by solving equation (I) with the boundary 
condition on the particle surface, the stream function 

being prescribed [8] by the expression 

where A* is the Laplacian operator with respect to 
the variables 0 and 1~ The unknown constants 
appearing in the process of solution arc dctermincd 
by matching solutions (3) and (3). 

We shall btart the solution of problem (I ) with 

determining the Lcro term of the outer expansion. It 
is evident that the tri\,ial solution Q”” = 0 satisfies 

equation (5). 
To find the /cro term of the inner expansion, it is 

necessary to solve equation (I) at PC, = 0 with the 

boundary condition at the particle surface and the 
condition of matching with the /et-o term of the 
outer expansion at I’ + 1.. The solution of this 
problem is 

CC, = ‘,“ ‘. 

where q is the root of the equation 

(7) 

F(q) = kf(cj- I)+(/ = 0. (8) 

Henceforth it is assumed that equation (H) has a 
single root over the interval (0. + x ). For this to be 
the case, it is sullicient to impose the requirement, for 
example, that 1; > 0. \ 2 ~ 1. In a particular case. 

for the linear law of absorption. (1 = kl(k + 1) [3]. 
Rewriting (71 in terms of the external variables 

yields I”’ = PC,. Taking this into account and 
substituting (2) into equations (5) (6) wc obtain the 
following problem to determine the first term of the 

outer expansion 

I 
<’ ’ ) = () ; 

:,I1 
$ ---t 0. ,,+ x. (‘3) 

The general solution of equation (9) has the form 

where il, are arbitrary constants. Pe,,(p) the Leg- 
endre polynomials and 

are the modified Bessel functions of the second kind. 
The coefficients ,4,, are determined from the 

condition of matching the expression for <“’ with the 
first term of the inner expansion of (7). Letting 11 
approach zero in (10). we obtain that the condition 

To determine the outer expansion terms. we have the 
lim c&(Y,,~ = lim <“)(/I./[) is satisfied at 
I-r ,) * (1 

problem ,4” = r/lrc. A,, = 0: ,I = I.2 ,._.. 

Expression (12) written in internal variables shows 
that a, = PC. Therefore the first term of the inner 
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expansion is described by 

A{, = -$[l-:,++ (13) 

with the boundary condition at the surface of the 
particle 

I’ = 1, ?c,/& = ki.5,; I = [if/f?x],=,_,. (14) 

The general solution of the problem (13)-(14) has 
the form 

where the constants a, and b, are determined 
respectively from 

(l-~~~u~~3/8~(~~+3) = (kd-r_2)b,; 

@-&)a,= (kl+n+l)b,; n=0,2,3 ,.... (16) 

The final expression for the coefficients a, and h, is 
determined from the condition of matching the first 
terms of the inner (14) and outer (12) expansions. 
The matching yiefds 

a,= -;, bo=f$ a,=O, b,= 39 
iqixxj’ 

u, = b, = 0, tr = 2,3 ,...; q* = kl(l+kl)-L. (17) 

Hence 

Y 49* 
5, =-2+x+4 

1 3 3 kA+3 1 
~--~+$-~~~~-8r3 

! 
p. (18) 

The second terms of the outer and inner expan- 
sions may be obtained in an analogous way [2-31, 
which leads to the following expression for the 
second term of the inner expansion 

Tz = )q(q*r-’ - 1). (19) 

DlFFUSlON FLUX TO THE PARTICLE SURFACE 

We shall characterize the influx of reagent to a 
particle by the mean Sherwood number 

Here I is the total diffusion flux. Substituting into 
(20) the available terms of the inner expansion, we 
obtain 

Sh = q +$qq*(Pe + Pe’ In Pe), (21) 

where q is the root of equation (8) and q* is 
determined in (17). 

Let us now specify the form of the function S and 
consider a particular case of the K-order reaction 

f‘(x) = -[-X-j”. (22) 

This corresponds to the following boundary con- 
dition on the particle surface 

r = 1, a+3 = k(g’” - 1). (23) 

The equation for q in the case of the reaction law 
(22) acquires the form 

F(q) = -k(l-q)“$q = 0. (24) 

Since F(k,lc,O) < 0 and F(k,k-, 1) > 0, then the 
root always exists over the interval (0. I), i.e. 
0 < q(k, ti) < I, F[k. ti,q(k, K,] = 0. 

Let K, < K2, while q1 and qZ are the roots of 
equation (24) respectively at til and ti2 and at a fixed 
k. Then q2 < q,. This is proved by the inequality 

F(k, ti2,q,) = -k(l-q,)“l 

+q, > -k(l-q,Y’+q, > 0. 

From this it follows that with increase of the reaction 
law index, the Sherwood number will decrease. 

Let now k, -c k,, while q1 and q2 be the roots of 
equation (24) respectively at k, and k, with ti being 
fixed. Then q1 < q2. This is proved with the aid of 
the inequality 

%G, k’> 41) = -k,(l---4,) 
t-q, < -k,(l-9,)” i-q, - 0. 

Therefore, with increase in the reaction rate 
constant k, the Sherwood number increases. At 
k >> 1, for the root of (24) we have 

q(k) =. 1 -k-‘jh. 

For the linear law of absorption (K = I), i, = I and 
q* = q, which leads to the result obtained in [3]. 

For the reaction law (22) the following formula 
hoids for the total Sherwood number 

Sh = q++ -~ 1 _$ tiy (Pe+ PC2 In Pr). (25) 

Now, consider several examples. 
For the second-order reaction the function q(k) is 

represented by curve 1 in Fig. 1. For a heterogeneous 
reaction between carbon and oxygen proceeding on 
the carbon particle surface. we have l/3 < ti < l/2 
[6,7]. Curves 2 and 3 illustrate the function y(k) for 
K = l/2 and K = l/3, respectively. The dashed curve 
is given for the case of the first-order reaction 133. 

The results obtained may be compared with those 
available for the large Peclet numbers [4]. The 
comparison shows the possibility for the results to be 
interpolated into the region of intermediate values of 
the Peclet number. 

CONCLUSIONS 

The results obtained in the present work make it 
possible to determine the total influx of substance to 
a particle moving in a gas for a wide class of surface 
reactions. In the case of the K-order reaction, 
expression (25) has been obtained for the total 
Sherwood number. The diffusion flux is shown to 
decrease with increase in the order of reaction. 

It should be noted that the results obtained are 
applicable for the analysis of heat and mass transfer 
of spherical particles moving in a gas only at small 
Peclet and Reynolds numbers. The solution may be 
used to calculate the heat flux to a moving particle in 
the fluid at low Reynolds numbers when the Prandti 
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number is not large. In the analysis of heat transfer 3. 
between a particle and the flow the results do not 

change on the diffusion coefficient being replaced by 
thermal diffusivity and the Sherwood number by the 

4, 

Nusselt number. The results retain their validity if 

the thermal effect of the surface reaction does not 5. 
cause substantial expansion of a gas and consider- 
able variations in thermal diffusivity. 

6. 

I. 

2. 
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CONVECTION PAR UNE PARTICULE SOLIDE DANS LE CAS D’UNE CINETIQUE NON 
LINEAIRE DE REACTION CHIMIQUE HETEROGENE 

R&sum&-Une solution approchte est obtenue pour le probleme permanent du transfert de masse entre 
une particule solide et sphkrique et un gaz en tcoulement laminaire B faibles nombres de P&let et de 
Reynolds. On considtre le cas d’une rtaction chimique en surface qui dbpend arbitrairement de la 
concentration de rtactant B la surface de la particule. Les rtsultats obtenus sent utilists, en particulier, 
pour dCterminer le flux massique entre 
fractionnel. La solution du probltme est 
interne et externe, en nombre de P&let. 
dipendance du flux total de rkactant sur 

particule et fluide pour des r&actions d’ordre &gral ou 
trouvie par la mkthode des dtveloppements asymptotiques, 
Le champ de concentration est dCterminC et on obtient la 
la surface de la particule d la cinttique de la reaction et au 
nombre de P&let. 

KONVEKTIVER STOFFTRANSPORT AN EIN FESTSTOFFPARTIKEL BE1 
NICHTLINEARER KINETIK HETEROGENER CHEMISCHER REAKTIONEN 

Zusammenfassung-Fiir das stationire Problem des Stoffaustausches zwischen einem sphsrischen 
Partikel und einer laminaren GasstrBmung wird eine NlherungslGsung fir kleine Peclet- und 
Reynolds-Zahlen erhalten. Dabei wird der Fall einer chemischen OberABchenreaktion betrachtet. die 
unmittelbar von der Konzentration des reagierenden Stoffes an der Oberfllche der Teilchen abhangig ist. 
Die erhaltenen Ergebnisse kiinnen insbesondere dazu benutzt werden, das Ma8 des Stofftransports 
zwischen einem Teilchen und der StrBmung bei vollstandiger oder teilweise ablaufender Reaktion zu 
bestimmen. Die LGsung des Problems wurde durch ein Verfahren gefunden, bei welchem Re- 
ihenentwicklungen der inneren und CuBeren Peclet&Zahl einander angepal3t werden. Das Konzentration- 
sfeld wurde bestimmt. Die Abhangigkeit der Reaktionskinetik vom gesamten reagierenden Stoffstrom, die 

Reaktionsrate und die Peclet&Zahl wurden erhalten. 
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KOHBEKT~BHA~ ~~~~Y3~~ K TBEPfiOfi YACTML& FIPM HE~~HE~HO~ 
KMHETMKE l-ETEPOI-EHHOB XMMMYECKOfi PEAKUMM 

AHHOT~UHSI - IIOJI~~~HO npw6nUmeHHoe pemwie mauuouapuoti 3anaw Maccoo6Meua netimyureikn 
TBCplIOii C@epU'ieCKOii WCTHUblC JIaMUHapHbIM nOTOKOM I-a3a IIpU MaJlbIX XOHeYHbIX 'IUCJlaX neKJlC 

U PefiHO,'lb_!WL PaCCMOT~H CJl,Wtii nOBepX,iOCTHOfi XUMUYeCKOt? ~aKL,UU, npOU38OJlbUbIM o6pasoM 

3aBUC%lueii OT KOH~eHT~U~~ pWi-eHTa y nOBt.?pXHOCTU YaCTUUbl. nOJIyVeHHbIe p3,'nbTaTbI MOrYT 

6bITb UCUO~b3OBaHbI B SBCTHOCTU XJIil On~AC~eHUR CKOpoCTU MaCCOO6~eHa SaCTUlibt C nOTOKOM 

B cnyqaex pearuuW uejI01’0 II npo6~or0 nopnnroa. Pemeiiue 3aaawi HaiineHo npvl noh4ouw Merona 

cpaLwiBaHu5l BHeUlHerO A BHyTpHHer0 aCHMnTOTUYeCKUX pa3noxeHuii no rucny Ilerne. OnpcneneHo 
none KOHUeHTpWUU. nOJly',eHa JaBUCUMOCTb nOnHOrOnOTOKa PaI-eHTa Ha nOBCpXHOCTb qaCTUUb1 01 

KUHeTLlKU peaKUUU. KOHCTaHTbICKOpOCTH tl 'iUCJla neK+Te. 


