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Abstract-—An approximate solution is obtained for a stationary problem of mass transfer between a
moving solid spherical particle and a laminar gas flow at low finite Peclet and Reynolds numbers. The
case of a chemical surface reaction which depends arbitrarily on reagent concentration at the particle
surface is considered. The results obtained may be used, in particular, to determine the rate of mass
transfer between a particle and a flow for the integral- and fractional-order reactions. The solution of the
problem has been found by the method of matching outer and inner asymptotic expansions in the Peclet
number. The concentration field has been determined. The dependence of the total reagent flow at the
particle surface on the reaction kinetics, rate constant and the Peclet number has been obtained.

NOMENCLATURE
particle radius:

U. particle velocity ;

D, diffusivity ;

v, kinematic viscosity of liquid;

k' reaction rate constant;

K, reaction index;

w, reaction rate;

1. = f(c), reaction law;

Pe, =alUD™ !, Peclet number;

Re, = alUv~! Reynolds number;
¢(&), concentration (nondimensional);
Con concentration of the incident flux;
Sc, Schmidt number;

Sh, Sherwood number;

I, total diffusion flux:

W, stream function;

# 0.  spherical coordinates;

Clip, €)/é(r, 1), Jacobian of the functions
Y and ¢;
0 = Pr, external coordinate;
q. root of equations (8), (24);
a,b,, A, constants;
, Laplacian operator;
g*,  coefficient determined in (17).

INTRODUCTION

INVESTIGATION of convective diffusion to the surface
of a reacting particle in a homogeneous flow of
viscous fluid was the concern of a number of
publications [1,2] which considered the case of
complete absorption of reagent by the particle
surface as well as of the chemical first-order surface
reaction [3,4]. It is of interest to study the diffusion
of reagent to a moving particle at the surface of
which there is a chemical reaction the rate of which
depends on the reagent concentration near the
particle surface in a more complex, generally speak-
ing arbitrary way. This type of problem occurs, for

89

example, when studying reagent diffusion to a
particle under the conditions of the reaction at the
particle surface proceeding according to the Lang-
muir kinetics with mean filling of the surface [5].
Examples of the integral-order reactions are also
generally known.

The paper considers stationary convective dif-
fusion of a reacting substance to a solid spherical
particle moving in a viscous gas. The particle is
assumed to be small enough so that the Reynolds
and Peclet numbers are low. Arbitrary conditions of
the diffusing substance absorption are prescribed at
the surface allowing an arbitrary-order chemical
reaction on the surface to be considered as a special
case.

For low finite (of the order of unity and smaller)
Reynolds and Peclet numbers, the dependence of the
total influx of reagent to a particle on the reaction
rate constant, its order and the Reynolds and Peclet
numbers is determined in a closed form. Several
specific examples are considered.

STATEMENT OF THE PROBLEM

Consideration is given to convective diffusion of a
reagent, dissolved in the flow, to the surface of a
moving spherical particle. It is assumed that the
Reynolds, Re = aUv™!, and Peclet, Pe =alUD™ !,
numbers are small [the Schmidt number for a gas
Sc = Pej/Re = O(1)]. Here, a is the particle radius, U
is its velocity, v the kinematic velocity of the gas, and
D is the diffusivity. The chemical reaction proceeds
on its surface with the rate w = k’f’(c,), where k' is
the reaction rate constant and ¢, is the reagent
concentration near the surface. The function (' is
determined by a mechanism of the surface reaction.
Thus, for the x-order reactions, f'(¢)=c¢". Of
considerable interest are the fractional-order re-
actions. This kind of problem appears, for example,
in the studies of reagent diffusion in the case when
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reaction on the particle surface proceeds according
to the Langmuir kinetics with mean filling of the
catalyst surface [5]. In this case wx is some effective
order of reaction. As a practically important example
we could cite a catalytic reaction between carbon
and oxygen. In this case the order of the reaction is
between a third and a half [6, 7].

The process of reagent transfer is governed by the
convective diffusion equation and the boundary
conditions which, in terms of the nondimensional
variables, in the spherical coordinate system con-
nected with the particle, have the form

I

. pe=cost:

Pe o, &) AG. = Co—

T R0
clior = k(-1
fie=h=—f". (h

=1,

Here ¢, is the concentration far from the particle:
the particle radius and gas velocity in the incident
flux stand for the scales of the nondimensional
variables; i is the dimensionless stream function
determined at Re < O(1}in [8]: k' = kaD ™"

Let us examine the boundary-value problem (1) by
the method of matched asymptotic expansions in
terms of the Peclet number. For the limiting case of
complete absorption an analogous analysis has been
made in [2]. while for the linear absorption law.
in[3].

For the analysis to be performed, introduce the
external coordinate p = Pr and seek the solution in
the form of inner and outer expansions

Y #,(Pe)S,(rop). 1<r<OPe™ "), (2)

n=0

i
*
il

% = z 2 Pe)E" (. ). O(Pe” Uy«

n=0

2 =1, lim (2, /o) = lim (2" Yig™) = 0.
Pe—0 Pe—0

(3)

The inner expansion terms are determined suc-
cessively by solving equation (1) with the boundary
condition on the particle surface, the stream function
being prescribed [8] by the expression

Vo = S 1P =1)
3 9 Voo b
D Pet - PO? 2 2

(1 + Q50 Pe + 405.2 Pe*In Pe ) X <‘_ + r)

3 i 1oy 5
—ggz Pﬁ’(2+’+;7)‘ll}+0(P(’“) (4)

x

To determine the outer expansion terms, we have the
problem

1 e* &%) .
Lt R LA AT - 3
A*E a0 *F-0, p—>

o

d’* — %,{)2(1 A/lz)—%S(rPe(l +u)

X

= B
l—cxp(Ap 5. ) ]+O(Pe ). (6}

where A* is the Laplacian operator with respect Lo
the variables p and g The unknown constants
appearing in the process of solution are determined
by matching solutions {2) and (3).

CONCENTRATION FIELD

We shall start the solution ol problem (1) with
determining the zero term of the outer expansion. It
is evident that the trivial solution &' = 0 satisfies
equation (5).

To find the zero term of the inner expansion, it is
necessary to solve equation (1) at Pe = 0 with the
boundary condition at the particle surface and the
condition of matching with the zero term of the
outer expansion at r— x. The solution of this
problem is

" (7)

Coy = qr
where ¢ is the root of the equation
Flgy =klg—1)+q =0 (8}

Henceforth it is assumed that cquation (8) has a
single root over the interval (0, + ). For this to be
the case, it is sufficient to impose the requirement, for
example, that f{ = 0. x = —1. In a particular case.
for the linear law of absorption, ¢ = k/(k+ 1) [3].
Rewriting (7) in terms of the external variables
yields «'"' = Pe. Taking this into account and
substituting (2) into equations (5)-(6) we obtain the
following problem to determine the first term of the
outer expansion
O l=pt ol

A*Q”’»(/l, + . )5“’:();
S dp PO

f'l]——)().

The general solution of equation (9) has the form

x i f’
Z ‘4nkn+l,2 By P(’,,(‘Ll).
n=0 L

\’ (10)

P L 9)

oyl 2
(1) 1 n
= expon(

where A, are arbitrary constants, Pe,(u) the Leg-
endre polynomials and

1.2 |
Y Ty T FA (n+m)!
K = o — (11
nr "2(2”‘) <,)/) pr( 2) ,"Z(, (/1—;71)Ym!p’"( )

are the modified Bessel functions of the second kind.
The coefficients 4, are determined from the

condition of matching the expression for &'’ with the

first term of the inner expansion of (7). Letting p

approach zero in (10), we obtain that the condition
lim &o(r ) = lim EW(p ) is satisfied at
o p0

Ay =q/n. A, =0 n=12....

n

Hence
s _ 4 Lot —1 >
&= exp[splu—1)] (12)

Expression (12) written in internal variables shows
that o, = Pe. Therefore the first term of the inner
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expansion is described by

ooy 3 L
AC: = r? (1 2r +2r3)ﬂ
with the boundary condition at the surface of the
particle
r=1 08 0r = kA, A={8f0x]mgqo (14)

The general solution of the problem (13)-(14) has
the form

(13)

{a,r"+b,r " YPe (n), (15)

where the constants a, and b, are determined
respectively from

(1—kA)a, +3/8q(kA+3) = (kA+2)b,;
(n—ki)a, = (kA +n+1b,: n=0,23,.... (16)

The final expression for the coefficients a, and b, is
determined from the condition of matching the first
terms of the inner (14) and outer (12) expansions.
The matching yields

3
4 p =M g 0 b =T

G = "7 2 8(ki+2)’
a,=b,=0, n=23..; q*=ki(l+kA)~". (17)
Hence
- q.,994% (1 _3 3 ki+3 1
“= 2+zr+"(2 & &z s 18

The second terms of the outer and inner expan-
sions may be obtained in an analogous way [2-3],
which leads to the following expression for the
second term of the inner expansion

&y =3qlg*r ' —1). (19)

DIFFUSION FLUX TO THE PARTICLE SURFACE

We shall characterize the influx of reagent to a
particle by the mean Sherwood number

I L[ jee,
Sh= e = —— s du. (20}
4naDc, 200 \¢ér /oy
Here I is the total diffusion flux. Substituting into

(20} the available terms of the inner expansion, we
obtain

Sh = q+1iqq*(Pe+ Pe® In Pe), (21
where q is the root of equation (8) and g* is
determined in (17).

Let us now specify the form of the function f and
consider a particular case of the x-order reaction

Sy = —[=x]"

This corresponds to the following boundary con-
dition on the particle surface

r=1, 0§/0r = k(" —1).

(22)

(23)

The equation for ¢ in the case of the reaction law
(22) acquires the form

F(g)= —k(l—g)'+q=0. (24)

Since F(k,«x,0) <0 and F{k,k,1)> 0, then the
root always exists over the interval (0.1), ie.
0 < glk, k) < 1, F[k,x,gqtk,x)] = C.

Let ky < x,, while ¢, and ¢, are the roots of
equation (24) respectively at x, and «, and at a fixed
k. Then g, < ¢q,. This is proved by the inequality

Flk, Kk, q;) = —k(l—ql)“
+qy > —k{l—q, ) +¢4, >0

From this it follows that with increase of the reaction
law index, the Sherwood number will decrease.

Let now k; < k,, while ¢, and ¢, be the roots of
equation (24) respectively at k, and k, with » being
fixed. Then ¢, < g,. This is proved with the aid of
the inequality

Flky, k6, q,) = —k{(1—q )
+qy < —k(I—q,) +q, =0

Therefore, with increase in the reaction rate
constant k, the Sherwood number increases. At
k > 1, for the root of (24) we have

glly ~ 1=k,

For the linear law of absorption {(x = 1), 4 = | and
g* = ¢, which leads to the result obtained in [3].

For the reaction law (22) the following formula
holds for the total Sherwood number
Kkg?

(Pe+ Pe? In Pe).
—q+Kg

Sh=g+% 1 (25)

Now, consider several examples.

For the second-order reaction the function g(k) is
represented by curve 1 in Fig. 1. For a heterogeneous
reaction between carbon and oxygen proceeding on
the carbon particle surface, we have /3 <k <172
[6,7] Curves 2 and 3 illustrate the function q(k) for
xk = 1/2 and x = 1/3, respectively. The dashed curve
is given for the case of the first-order reaction [3].

The results obtained may be compared with those
available for the large Peclet numbers [4]. The
comparison shows the possibility for the results to be
interpolated into the region of intermediate values of
the Peclet number.

CONCLUSIONS

The results obtained in the present work make it
possible to determine the total influx of substance to
a particle moving in a gas for a wide class of surface
reactions. In the case of the x-order reaction,
expression (25) has been obtained for the total
Sherwood number. The diffusion flux is shown to
decrease with increase in the order of reaction.

It should be noted that the results obtained are
applicable for the analysis of heat and mass transfer
of spherical particles moving in a gas only at small
Peclet and Reynolds numbers. The solution may be
used to calculate the heat flux to a moving particle in
the fluid at low Reynolds numbers when the Prandtl
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number is not large. In the analysis of heat transfer 3.
between a particle and the flow the results do not
change on the diffusion coefficient being replaced by
thermal diffusivity and the Sherwood number by the
Nusselt number. The results retain their validity if
the thermal effect of the surface reaction does not 3.
cause substantial expansion of a gas and consider-
able variations in thermal diffusivity.
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CONVECTION PAR UNE PARTICULE SOLIDE DANS LE CAS D’'UNE CINETIQUE NON
LINEAIRE DE REACTION CHIMIQUE HETEROGENE

Résumé— Une solution approchée est obtenue pour le probléme permanent du transfert de masse entre
une particule solide et sphérique et un gaz en écoulement laminaire 4 faibles nombres de Péclet et de
Reynolds. On considére le cas d’une réaction chimique en surface qui dépend arbitrairement de la
concentration de réactant a la surface de la particule. Les résultats obtenus sont utilisés, en particulier,
pour déterminer le flux massique entre particule et fluide pour des réactions d’ordre intégral ou
fractionnel. La solution du probléme est trouvée par la méthode des développements asymptotiques,
interne et externe, en nombre de Péclet. Le champ de concentration est déterminé et on obtient la
dépendance du flux total de réactant sur la surface de la particule a la cinétique de la réaction et au
nombre de Péclet.

KONVEKTIVER STOFFTRANSPORT AN EIN FESTSTOFFPARTIKEL BEI
NICHTLINEARER KINETIK HETEROGENER CHEMISCHER REAKTIONEN

Zusammenfassung — Fiir das stationdre Problem des

Stoffaustausches zwischen einem sphérischen

Partikel und einer laminaren Gasstromung wird eine Néiherungslosung fir kleine Peclet- und
Reynolds—Zahlen erhalten. Dabei wird der Fall einer chemischen Oberflichenreaktion betrachtet, die
unmittelbar von der Konzentration des reagierenden Stoffes an der Oberfliche der Teilchen abhingig ist.

Die erhaltenen Ergebnisse konnen insbesondere dazu

benutzt werden, das MaB des Stofftransports

zwischen einem Teilchen und der Strdmung bei vollstindiger oder teilweise ablaufender Reaktion zu

bestimmen. Die Losung des Problems wurde durch ein Verfahren gefunden, bei welchem Re-

ihenentwicklungen der inneren und duBeren Peclet—Zahl einander angepaBBt werden. Das Konzentration-

sfeld wurde bestimmt. Die Abhiingigkeit der Reaktionskinetik vom gesamten reagierenden Stoffstrom, die
Reaktionsrate und die Peclet-Zahl wurden erhalten.
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KOHBEKTUBHASl JUOGY3INS K TBEPAOW YACTULIE NMPH HEJUHENHONA
KWUHETUKE T'ETEPOTEHHON XUMHWYECKON PEAKLIMH

AnnoTaums — [MonyveHo npubikeHHOE PCLICHHE CTALMOHAPHON 3aJau MaccooOMeHa NBIKYILEHCS
TBEPIO# cepuueckoil YacTHIUBLI C JaMHHapHLIM NOTOKOM rasa NMpH MallblXx KOHe4HBIX uuciax [lexne
u Peitnonbiaca. PaccMotper ciyuall NOBEPXHOCTHOR XHMHMHMECKOH peakluyi, HpPOM3BOJbLHBLIM 0Dpazom
3aBHCHILEH OT KOHHEHTPAIMHM PEareHTa y MOBEPXHOCTH 4acTHubl. [losnyueHHble pe3ynbTaThl MOFYT
ObITh HCNOJIL30BaHBI B HACTHOCTH [UIS ONPEIAC/ICHHY CKOPOCTH MaccooOMeHa 4acTHlbl C MOTOKOM
B Ciy4asx peaxumii nejioro u apobHoro nopaiakos. PeieHHe 3ajauM HaiiACHO NPH NOMOUIM METOIa
CpaHIMBAHHA BHEIIHETO ¥ BHYTPEHHErO aCMMIITOTHYECKHX pasfoxeHuit no ducny IMexne. Onpenenero
noJie KoHueHTpauuu. [TonayyeHa 3aBUCHMOCTB NOJIHOTO NMOTOKA PEareHTa Ha MOBEPXHOCTH HACTHLbI OT
KHHETHKH PEaKLMH, KOHCTAHTBLI CKOPOCTH H uucia [Mex:e.



